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Word2Vec Overview

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors
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https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture01-wordvecsl.pdf



What's wrong with word2vec?

—0.224

e One vector for each word type y(bank) — | U-130
—0.290

0.276

* Complex characteristics of word use: semantics, syntactic behavior, and connotations

e Polysemous words, e.g., bank, mouse

mouse! : .... a mouse controlling a computer system in 1968.
mouse? : .... a quiet animal like a mouse
bank! : ...a bank can hold the investments in a custodial account ...

bank? : ...as agriculture burgeons on the east bank, the river ...



Static vs. Contextualized
e Problem: Word embeddings are applied in a context

free manner

open a bank account on the river bank

R

(0.3, 0.2, -0.8, ..]

e Solution: Train contextual representations on text

corpus

0.9, -0.2, 1.6, ..] [-1.9, -0.4, 0.1, ..]

open a bank account on the river bank



Contextualized word embeddings

Let’s build a vector for each word conditioned on its context!
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( Contextuahzed word embeddlngs
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the movie was terribly
exclting !
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Masked language models (MLMS)

® Solution: Mask out 15% of the input words, and then predict the masked words

store gallon

0 0
the man went to the [MASK] to buy a [MASK] of milk

e Too little masking: too expensive to train

. Too much masking: not enough context



One pre-trained models Is adapted everywhere
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Pre-training Fine-Tuning

Maybe this is one of the first popular Foundation model

On the Opportunities and Risks of Foundation Models. https://arxiv.org/abs/2108.07258



https://arxiv.org/abs/2108.07258

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

e Gets bidirectional context — can condition on future!

Encoders : : )
* How do we train them to build strong representations?
——=T 7 Encoder- » Good parts of decoders and encoders?
3 Decoders « What’s the best way to pretrain them?
« Language models! What we’ve seen so far.
12221 Decoders * Nice to generate from; can’t condition on future words

https://web.stanford.edu/class/cs224n/slides/cs224n-2023-lecture9-pretraining.pdf



Today’s Lecture— Big Picture



Typical NLP Applications

Sentence classification

Question answering (span prediction)
NER (sequential labeling)

Retrieval (document pair classification)

These tasks need either a sentence-level or (contextualized) token-level representation

. ‘ Label space

Document-level representation
D D GED amn oD Token-level representation

Neural Network Blocks

I think therefore | am ) .
Here we refer a document as a longer “sentence



Sentence-level tasks

Fusion at input tokens (BERT)
Fusion at the middle (Condenser)
Fusion at output (SImMCSE)

Gl G G oEEn o Neural Network Blocks

Neural Network Blocks
Neural Network Blocks Neural Network Blocks

I think therefore | am I think therefore | am I think therefore | am

Single Sentence Sentence pair classification


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=sVR8ktkAAAAJ&citation_for_view=sVR8ktkAAAAJ:4OULZ7Gr8RgC

Token-level tasks, e.g. word segmentation

FB) H() ™E) K(B) L(E) K(B) #(E)

beginning, inside, ending, single
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Neural Network Blocks
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Token-level tasks, e.g. span prediction

v

————————————————

Span Selection
Instance

Query {blank |

Search
Index

Retrieved
Passages

\-————-————-——-”

Background

Example:

Query “In a station of the metro™ is an Imagist
poem by [BLANK] published in 1913
in the literary magazine Poetry

Passage ... Ezra Pound 's famous Imagist
poem, “In a station of the metro”, was
inspired by this station ...

Answer Ezra Pound

https://aclanthology.org/2020.acl-main.247.pdf



Token-level tasks, e.g. span prediction

Query (0.1,0.2) Paragraph (0.1,0.2) Ezra (0.9,0.1) Pound (0.1, 0.9) ....

Start, end

‘ ‘ ‘ ‘ . . Usually two classification heads

Neural Network Blocks

Query Paragraph: Ezra Pound .....

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/reports/default/15792151 . pdf



Which neural networks should be used for the
NLP neural network backbone?

v Multilayer Perceptron (MLP)
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Why Transformer is so powerful?




Today’s lecture

MLP
+: Strongest inductive bias: if all words are concatenated
+: Weakest inductive bias: if all words are averaged
- . The interaction at the token-level is too weak
CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- . Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
Transformer
+: Achieve global dependence at the token-level by decoupling token-level
Interaction and feature-level abstraction into two components, in SAN and FNN.

Scaling law and emergent ability



Semantic Abstraction
and Semantic composition



(1) What i1s Semantic abstraction?

Conv1-2 | Conv3-4 Conv4-4 onv5-4

Pixel -> texture -> region -> object -> relation -> semantics-> ...

Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. https://arxiv.org/pdf/1707.03816. ICCV 2015



https://arxiv.org/pdf/1707.03816

Higher-level layers deal with higher-degree abstraction

Input: [ think therefore |

( N

Neural network layers > Lexical Analysis
\ J
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Neural network layers —|-------cccooommmm oo > Syntactic Analysis
\ J
~ A ¢

Neural network layers | ... > Semantic Analysis
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Neural network layers [----====================== > Discourse Integration

Neural network layers Pragmatic Analysis
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Output: am



(11) What I1s Semantic composition?

+“T"*1‘(mm

The Chinese University of Hong Kong, Shenzhen , ~ G

Ivory (825F) towe (%) Ivory tower(SRF15)

Semantic composition is the task of understanding the meaning of text by composing
the meanings of the individual words in the text.

It involves token interaction



Semantic composition vs. Semantic Abstraction

Token level: | think therefore | am

10103 PIOM :|9A3| 31njea

| Composition w/ token interaction Non-linear Abstraction w/t token interaction




How to combine composition and Abstraction

A flatten solution: MLP (e.g. NNLM)

S — — ] — a—

Input:

Complexity: O(D*L?)

Yoshua Bengio et.al A Neural Probabilistic Language Model. NIPS 2003




How to combine composition and Abstraction

A variant of MLP (e.g. CBoW)
E Remove token interaction

in deeper layers

e rFIIISDDZDIIos N\
O Mean pooling (token
FoSSSSSSSDIIa interaction) in the first layer
VN e e e —a
rFSSDDZIIIIsos
Complexity: O(D?) N _/

T Mikolov et.al Efficient Estimation of Word Representations in Vector Space._https://arxiv.org/abs/1301.3781




Inductive bias of composition

How we believe tokens should be interacted as the

inductive bias, also considering semantic abstraction simultaneously?

Definition: The inductive bias (a.k.a learning bias) of a learning algorithm is the set of assumptions that a
machine learning algorithm makes about the relationship between input variables (features) and output

variables (labels) based on the training data.



Inductive bias of composition

CNN: local composition within a window
RNN: recurrently compose tokens from left to right or right to

= K




Issues of CNN and RNN

CNN: local composition:
unfriendly to long-term/global token interaction

RNN: recurrent composition
what If we forget tokens checked 10 timestamp ago?



_ong-term token interaction
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Huibin Ge, Chenxi Sun, Deyi Xiong, Qun Liu. Chinese WPLC: A Chinese Dataset for Evaluating Pretrained Language Models on Word
Prediction Given Long-Range Context. https://aclanthology.org/2021.emnlp-main.306/



How can we freely compose tokens without
constraints (weaker inductive bias) ?

The modern deep learning is just using weaker inductive biases and make more data-
driven instead of prior-driven.



Make each token to see every other token

528 s o
ot E_c 95 -E & =
CES8§E8SE8cez2® The
Th nxn .
ﬁ"(ne York {%ﬂ% f|rm
for AT
which *"'.4"‘-9;.*"!'.1‘\‘.‘:\;\* for
N Y 7
Jacob —— New Wﬂ"r‘.!’!.’jv&?ﬂ
worked XIS AN _
2 L A A X A which
sent 1 ":=l’5' 2 WA o>
him to ‘5«, @.‘ e’g,"v’:"/
N d ’
to TR XA Jacob
York nim N
Attn Scores sent  Worked

Difference between BERT and

Y __ S . e .9



Efficiency: Decompose abstraction and composition

FFEN: abstraction

SAN: composition
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General picture

MLP
+: Strongest inductive bias: if all words are concatenated
+: Weakest inductive bias: if all words are averaged
- . The interaction at the token-level is too weak
CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- . Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
Transformer
+: Achieve global dependence at the token-level by decoupling token-level
Interaction and feature-level abstraction into two components, in SAN and FNN.

Scaling law and emergent ability



Multilayer Perceptron (MLP)

Definition: The Multilayer Perceptron (MLP) is a type of artificial neural network
(ANN) that consists of multiple layers of interconnected artificial neurons or
perceptrons.

A perceptron can be seen as a single neuron
(one output unit with a vector or layer of input units):

Output unit: scalar y = f(x)

C{‘ Input layer: vector X

Qutput
Layer

Input Hidden
Layer Layer



Feed-forward NNSs

« The units are connected with no cycles
« The outputs from units in each layer are passed to units in the next higher layer.
No outputs are passed back to lower layers

Fully-connected (FC) layers:

All the units from one layer are
fully connected to every unit of
the next layer.

input layer

hidden layer 1 hidden layer 2

f = lambda x: 1.0/(1.0 + np.exp(=-x))
X = np.random.randn(3, 1)

hl f(np.dot(Wl, x) + bl)

h2 f(np.dot(W2, hl) + b2)

out = np.dot(W3, h2) + b3



Backpropagation

Definition:
Backpropagation, short for "backward propagation of errors," is a supervised learning algorithm used
for training artificial neural networks, including deep learning models like Multilayer Perceptrons
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Common Challenges in Backward Propagation

Vanishing Gradients
Exploding Gradient
Overfitting

Local Minima

Poor Initialization

Summary:

- Backward propagration is a critical but challenging step in training neural networks
- Addressing these issues requires a combination of architectural choices,
optimization techniques, and regularization methods.



Feedforward neural language models

A Neural Probabilistic Language Model (Bengio et al 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Yoshua Bengio

Probabilistic models of sequences: In the 1990s, Bengio combined neural networks with probabilistic
models of sequences, such as hidden Markov models. These ideas were incorporated into a system
used by AT&T/NCR for reading handwritten checks, were considered a pinnacle of neural network
research in the 1990s, and modern deep learning speech recognition systems are extending these
concepts.

High-dimensional word embeddings and attention: In 2000, Bengio authored the landmark paper, "A
Neural Probabilistic Language Model,” that introduced high-dimension word embeddings as a
representation of word meaning. Bengio’s insights had a huge and lasting impact on natural language
processing tasks including language translation, question answering, and visual question answering.
His group also introduced a form of attention mechanism which led to breakthroughs in machine
translation and form a key component of sequential processing with deep learning.

Generative adversarial networks: Since 2010, Bengio’s papers on generative deep learning, in
particular the Generative Adversarial Networks (GANs) developed with Ian Goodfellow, have spawned
a revolution in computer vision and computer graphics. In one fascinating application of this work,
computers can actually create original images, reminiscent of the creativity that is considered a
hallmark of human intelligence.

https://awards.acm.org/about/2018-turing



Feedforward neural language models

A Neural Probabilistic Language MOdel(BengiO et al., 2003)

Yoshua Bengio BENGIOY@IRO.UMONTREAL.CA
Réjean Ducharme DUCHARME@IRO.UMONTREAL.CA
Pascal Vincent VINCENTP@IRO.UMONTREAL.CA
Christian Jauvin JAUVINC@IRO.UMONTREAL.CA

Key 1dea: Instead of estimating raw probabilities, let’s use a

neural network to fit the probabilistic distribution of language!

P(w | lamagood) P(w | |ama great)

Key ingredient: word embeddings e(good) = e(great)

Hope: this would give us similar distributions for similar contexts!



Review: MLP

1.  Brief introduction of MLP;
2. Forward propagation and backward propagation;

Limitations of MLP:

hw,b(x)
1. Limited Spatial Invariance (vs. CNNSs)

Layer L,

2. Sequential Information Handling (vs. RNNS)

3. Positional Encoding (vs. Transformers)
4. Attention Mechanism (vs. Transformers)
5. Hierarchical Feature Extraction (vs. CNNs and Transformers)
6. Parameter Efficiency (vs. Transformers)

7. Pre-training Efficiency (vs. Transformers)

8. Structured Input Bias (vs. CNNs and Transformers)



C N N &R N N . Convolutional Neural Network (CNN)
- Recurrent Neural Network (RNN)

Convolutional Neural Network

—

] '
Convolution + ReLU + Max Pooling l Fully Connected Layer '

Feature Extraction in multiple hidden layers Classification in the output layer

Recurrent Neural Network

A

- g

Recurrent Noural Network




Today’s lecture

MLP
+: Strongest inductive bias: if all words are concated
+: Weakest inductive bias: if all words are averaged
- . The interaction at the token-level is too weak
CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- . Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
Transformer
+: Achieve global dependence at the token-level by decoupling token-level
Interaction and feature-level abstraction into two components, in SAN and FNN.

Scaling law and emergent ability
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At each time, it only perceives part of the input.




CNN

Convolutional Neural Network

What is CNN?
Motivation: Image Processing
Key Components

- Convolutional Layers

- Pooling Layers

- Fully Connected Layers

Hierarchical Feature Extraction

A Typical Convolutional Neural Network (CNN)

Output

Convolution Pooling Convolution

Pooled
Featured maps

Kernel

‘()//
\‘

———
Fully connected layer

Input Image

Featured
maps

Featured
maps

Pooled
Featured maps

Flatten
layer

4

.
T

Feature Maps

e |
l Feature Extraction Probabilistic /

distribution

|
" '. Classification ' ,




Convolutional NNs 1in 1image classification

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Key components: 1) convolution; 2) pooling; 3) multiple channels (feature maps)



Convolution

Stride =1

Padding =0 Padding =1

Stride =2




CNN Visualization
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https://poloclub.qgithub.io/cnn-explainer/
https://adamharley.com/nn_vis/cnn/3d.html



https://poloclub.github.io/cnn-explainer/

Convolutional NNs for text classification
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(Kim 2014): Convolutional Neural Networks for Sentence Classification



Embeddings

Convolutions

Gated
Linear
Units

Attention

Convolutional Sequence to Sequence Learning

<p= They agree </s> <p=

L,

Dot products

Encoder and decoder are simple blocks of convolution
operation followed by nonlinearity on fixed size of input.

Introduce a concept of order preservation as a

positional vectors p = (p_1,p_2...,p_m). In

combination of both input elements are represented as

E=(e_1=w_1+p_1,e_2=w_2+p_2,
...,€_M=W_m+p_m).

Adds a linear mapping to project between the embedding

size f and the convolution outputs that are size 2d.

Computes a distribution over the T possible next target

[ 1]

elements y_i+1 by transforming the top decoder output
h_i_1via a linear layer with weights and bias.

Y Y Y

{

L J

|
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<p> <p> <s> Sie

Sie stimmen zu </s>

https://browse.arxiv.org/pdf/1705.03122.pdf This paper inspires Transformer!

stimmen zu



https://browse.arxiv.org/pdf/1705.03122.pdf

R N N Core idea: Apply the same
weights W repeatedly

Recurrent Neural Network
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A Simple RNN Language Model

output distribution

g = softmax (Uh(t) + bg) e RIVI

hidden states
) = o (Whh(t_l) +W.el) ¢ bl)

h() is the initial hidden state

word embeddings
e® — Egp®

words / one-hot vectors
z®) c RIVI
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ps |
a N
o
U
h®)__ h)_ h(2) h(3) h(4)
@ @ @ @ (0]
@ W, |@| W, 0| W, |@| Wr |0
© 1@ 1@ @ @
® @ ©) O @
— N Y N ¥
W W W We
gn: dm: dm: 4@:
© o O o
Te T& & s
the students opened thei

Note: this input sequence could be much longer now!




RNN Language Models

RNN Advantages:
. Can process any length input
- Computation for step t can (in

g4 = P(x®)|the students opened their)

book
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Training an RNN Language Model

= negative log prob of ‘“‘students”

Loss AR (O] B A () B A C) R A ()
T N N N
Predicted prob dists > g e 7 (3) g4
/h N N
U U U U
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(1) 2 (2) 2(3) 2



Training an RNN Language Model - —
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Problems with RNNs: Vanishing and Exploding Gradients
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Vanishing gradient intuition
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Vanishing gradient intuition
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chain rule!



Vanishing gradient intuition
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Vanishing gradient intuition
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Vanishing gradient intuition

J1) ()

N
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Vanishing gradient problem:
When these are small, the gradient

What happens if these are small? signal gets smaller and smaller as it
backpropagates further




Special case of RNN - LSTM

_______________ N | | Forget Gate: — This gate decides what information should be carried out
Cot 7 CellState @ | _ — — — — R Ot [ sig l =S forward or what information should be ignored. Information from previous
' hidden states and the current state information passes through the sigmoid
‘ function. Values that come out from sigmoid are always between 0 and 1. —

| tanh I:tanh function . . . . .

' if the value is closer to 1 means information should proceed forward and if

value closer to 0 means information should be ignored.
Input Gate: — After deciding the relevant information, the information goes

= point-by-point
mipicstion to the input gate, Input gate passes the relevant information, and this leads

to updating the cell states. simply saving updating the weight. Input gate
h,’ ; @ " PONL by pooL adds the new relevant information to the existing information by updating

/
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S
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hM - addition

cell states.
Output Gate: — After the information is passed through the input gate, now
the output gate comes into play. — Output gate generates the next hidden
states. and cell states are carried over the next time step.

)./
IR I OutputG:th//

= vector connections

LSTM CELL

https://mitu.co.in/wp-content/uploads/2022/12/8.-GRU-and-LSTM.pdf



Special case of RNN - GRU

he—y

GRU ( Gated Recurrent Units ) are similar to the
LSTM networks. GRU is a kind of newer version of
RNN. However, there are some differences between
GRU and LSTM.

— GRU doesn’t contain a cell state

— GRU uses its hidden states to transport information
— It Contains only 2 gates(Reset and Update Gate)

— GRU is faster than LSTM — GRU has lesser tensor’s
operation that makes it faster



Is vanishing/exploding gradient just an RNN problem?

- No! It can be a problem for all neural architectures (including feed-forward and

convolutional), especially very deep ones.

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small as it
backpropagates

- Thus, lower layers are learned very slowly (i.e., are hard to train)
- Another solution: lots of new deep feedforward/convolutional architectures add more
direct connections (thus allowing the gradient to flow)

For example: X
Residual connections aka “ResNet” weight layer
. . |
Also known as skip-connections F) v x
weight layer identity

The identity connection
preserves information by default

This makes deep networks much Figure 2. Residual learning: a building block.
easier to train

"Deep Residual Learning for Image Recognition”, He et al, 2015.
https://arxiv.org/pdf/1512.03385.pdf




CNN vs. RNN

|p-erf0rmance| Ir  hidden batch sentlen filter_size margin

CNN 82.38 02 20 5 60 3 -
SentiC (acc) GRU 8632 0.1 i 50 60 - -
TextC LSTM 84.51 0.2 20 40 60 - -
CNN 68.02 012 70 10 20 3 -
RC (F1) GRU 68.56 012 80 100 20 - -
LSTM 66.45 0.1 g0 20 20 - -
CNN 77.13 0.1 70 50 50 3 -
TE (acc) GRU T8.78 0.1 50 80 65 - -
LSTM 77.85 0.1 80 50 50 - -
CNN|(63.69,65.01)| 0.01 30 60 40 3 03
SemMatch AS (MAP & MRR) GRU|(62.58.63.59)| 0.1 80 150 40 - 03
LSTM|(62.00.,63.26)| 0.1 60 150 45 - 0.1
CNN 71.50 0.125 400 50 17 5 0.01
QRM (acc) GRU 69.80 1.0 400 50 17 - 0.01
LSTM 71.44 1.0 200 350 17 - 0.01
CNN 54.42 0.01 250 50 5 3 0.4
SeqOrder PQA (hit@ 10) GRU 55.607 0.1 250 50 5 - 03
LSTM 55.39 0.1 300 50 5 - 03
CNN 94.18 0.1 100 10 60 5 -
GRU 93.15 0.1 50 50 60 - -
ContextDep POS tagging (acc) LSTM 93.18 0.1 200 70 60 - -
Bi-GRU 94.26 0.1 50 50 60 - -
Bi-LSTM 94.35 0.1 150 5 60 - -

Table 1: Best results or CNN, GRU and LSTM in NLP tasks

https://arxiv.org/pdf/1702.01923



LeSSOnS fOr RNN/CN NS |n NLP (before Transformer)

Multi-task?

. Without pre-training, highly specialized,;

. Cannot beats Rule-based systems, too much.
More discrimination tasks, less generative.



Transformer

- Encoder

- Decoder

- Self-attention

- Multi-head self-attention

- Positional Encoding



Today’s lecture

MLP
+: Strongest inductive bias: if all words are concated
+: Weakest inductive bias: if all words are averaged
- . The interaction at the token-level is too weak
CNN & RNN
+: The interaction at the token-level is slightly better.
CNN: Bringing the global token-level interaction to the window-level
- . Make simplifications, its global dependencies are limited
RNN: An ideal method for processing token sequences
- . Its recursive nature has the problem of disaster forgetting.
Transformer
+: Achieve global dependence at the token-level by decoupling token-level
Interaction and feature-level abstraction into two components, in SAN and FNN.

Scaling law and emergent ability
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Why transformer



Why Pretraining + Transformers

1.Because transformers are more efficient?

Transformers are shower comparing to LSTM with same amount parameters

Credits from #7t8[#, Recurrent Al



Why Pretraining + Transformers

2. Because transformers are better on machine translation?

RNNs and CNNs are equally good in machine translations



Why Pretraining + Transformers

- 3. Because transformers use nothing but attention?

So what?



Why Pretraining + Transformers

4. Because transformers learns contextualised word embeddings?

RNN also can learn contextualised word embeddings




Why Pretraining + Transformers

« Capacity: The model has sufficient expressive capabilities

<« Optimization: Can optimize and obtain better solutions In a huge
expression space

<+ Generalization: Better solutions can generalize on test data

“Exploring the Limits of Language Modeling
Jozefowicz et al 2016

LSTM-8192-1024, 1.8 billion params, ppl 30.6
LSTM-8192-2048, 3.3 billion params, ppl 32.2

Dai, Yang et al 2016
Transformer-XL Base, 0.46 billion params, ppl 23.5
Transformer-XL Large, 0.8 billion params, ppl 21.8

ppl=perplexity, the lower the better

Scalability: Transformers scale much better with more parameters



